Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(8): 5450-60, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20022956

RESUMO

Cofilin-actin bundles (rods), which form in axons and dendrites of stressed neurons, lead to synaptic dysfunction and may mediate cognitive deficits in dementias. Rods form abundantly in the cytoplasm of non-neuronal cells in response to many treatments that induce rods in neurons. Rods in cell lysates are not stable in detergents or with added calcium. Rods induced by ATP-depletion and released from cells by mechanical lysis were first isolated from two cell lines expressing chimeric actin-depolymerizing factor (ADF)/cofilin fluorescent proteins by differential and equilibrium sedimentation on OptiPrep gradients and then from neuronal and non-neuronal cells expressing only endogenous proteins. Rods contain ADF/cofilin and actin in a 1:1 ratio. Isolated rods are stable in dithiothreitol, EGTA, Ca(2+), and ATP. Cofilin-GFP-containing rods are stable in 500 mM NaCl, whereas rods formed from endogenous proteins are significantly less stable in high salt. Proteomic analysis of rods formed from endogenous proteins identified other potential components whose presence in rods was examined by immunofluorescence staining of cells. Only actin and ADF/cofilin are in rods during all phases of their formation; furthermore, the rapid assembly of rods in vitro from these purified proteins at physiological concentration shows that they are the only proteins necessary for rod formation. Cytoplasmic rod formation is inhibited by cytochalasin D and jasplakinolide. Time lapse imaging of rod formation shows abundant small needle-shaped rods that coalesce over time. Rod filament lengths measured by ultrastructural tomography ranged from 22 to 1480 nm. These results suggest rods form by assembly of cofilin-actin subunits, followed by self-association of ADF/cofilin-saturated F-actin.


Assuntos
Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/isolamento & purificação , Actinas/química , Actinas/isolamento & purificação , Destrina/química , Destrina/isolamento & purificação , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Destrina/genética , Destrina/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ratos , Suínos , Xenopus laevis
2.
Plant J ; 52(3): 460-72, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17877706

RESUMO

The Actin Depolymerizing Factor (ADF) gene family of Arabidopsis thaliana encodes 11 functional protein isovariants in four ancient subclasses. We report the characterization of the tissue-specific and developmental expression of all Arabidopsis ADF genes and the subcellular localization of several protein isovariants. The four subclasses exhibited distinct expression patterns as examined by qRT-PCR and histochemical assays of a GUS reporter gene under the control of individual ADF regulatory sequences. Subclass I ADFs were expressed strongly and constitutively in all vegetative and reproductive tissues except pollen. Subclass II ADFs were expressed specifically in mature pollen and pollen tubes or root epidermal trichoblast cells and root hairs, and these patterns evolved from an ancient dual expression pattern comprised of both polar tip growth cell types, still observed in the monocot Oryza sativa. Subclass III ADFs were expressed weakly in vegetative tissues, but were strongest in fast growing and/or differentiating cells including callus, emerging leaves, and meristem regions. The single subclass IV ADF was constitutively expressed at moderate levels in all tissues, including pollen. Immunocytochemical analysis with subclass-specific monoclonal antibodies demonstrated that subclass I isovariants localize to both the cytoplasm and the nucleus of leaf cells, while subclass II isovariants predominantly localize to the cytoplasm at the tip region of elongating root hairs and pollen tubes. The distinct expression patterns of the ADF subclasses support a model of ADF s co-evolving with the ancient and divergent actin isovariants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Destrina/genética , Arabidopsis/classificação , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Destrina/química , Destrina/isolamento & purificação , Destrina/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Pólen/genética , Pólen/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...